Color and COD removal from wastewater containing Reactive Black 5 using Fenton's oxidation process.

نویسندگان

  • Süreyya Meriç
  • Deniz Kaptan
  • Tuğba Olmez
چکیده

In this study, Reactive Black 5 (RB5) was removed from synthetic wastewater using Fenton's oxidation (FO) process. Experiments were conducted on the samples containing 100 and 200 mg l(-1) of RB5 to remove the dye toxicity. Seventy-five milligram per litre of RB5 caused 25% toxicity on 24-h born daphnids whereas 100 mg l(-1) of RB5 displayed 100% toxicity on Daphnia magna. The study was performed in a systematic approach searching optimum values of FeSO(4) and H(2)O(2) concentrations, pH and temperature. Optimum pH and temperature for 100 mg l(-1) of RB5 were observed as 3.0 and 40 degrees C, respectively, using 100 mg l(-1) of FeSO(4) and 400 mg l(-1) of H(2)O(2) resulted in 71% chemical oxygen demand (COD) and 99% color removal. For 200 mg l(-1) of RB5, 84% COD removal was obtained using 225 mg l(-1) of FeSO(4) and 1000 mg l(-1) of H(2)O(2) yielding 0.05 molar ratio at pH 3.0 and 40 degrees C. Color removal was also more than 99%. The optimum conditions determined in accordance with the literature data. The H(2)O(2) requirement seems to be related to initial COD of the sample. FeSO(4)/H(2)O(2) ratios found were not changed for both concentrations. The temperature affected the COD removal significantly at high degrees. Toxicity was completely removed for each concentration of RB5 at optimum removal conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Color and COD removal from waste water containing acrylic water base color using Fenton's oxidation process

Degradation of acrylic water base color from synthetic wastewater by the Fenton process was performed. Experiments were conducted on the sample containing 100 and 400 mg/l of Acrylic water base color. The study was performed for searching optimum values of FeSO4 and H2O2 concentration, pH and temperature. The H2O2 requirement seems to be re...

متن کامل

Color and COD removal from waste water containing acrylic water base color using Fenton's oxidation process

Degradation of acrylic water base color from synthetic wastewater by the Fenton process was performed. Experiments were conducted on the sample containing 100 and 400 mg/l of Acrylic water base color. The study was performed for searching optimum values of FeSO4 and H2O2 concentration, pH and temperature. The H2O2 requirement seems to be re...

متن کامل

Application of Fenton Oxidation Process for Degradation of Reactive Black 5 in Aqueous System

In the study, Reactive Black 5 (RB5) was removed from synthetic wastewater using Fenton's oxidation (FO) process. Batch experiments were conducted on the samples containing 50, 250 and 500 mg/L of RB5. The study was performed in the systematic optimum value of H2O2 and FeSO4 concentrations, pH and temperature. Optimum pH and temperature for 250 mg/L RB-5 were observed at 3.0 and 40°C respective...

متن کامل

Color and COD removal from waste water containing acrylic water base color using Fenton's oxidation process

Degradation of acrylic water base color from synthetic wastewater by the Fenton process was performed. Experiments were conducted on the sample containing 100 and 400 mg/l of Acrylic water base color. The study was performed for searching optimum values of FeSO4 and H2O2 concentration, pH and temperature. The H2O2 requirement seems to be re...

متن کامل

Color and COD removal from waste water containing acrylic water base color using Fenton's oxidation process

Degradation of acrylic water base color from synthetic wastewater by the Fenton process was performed. Experiments were conducted on the sample containing 100 and 400 mg/l of Acrylic water base color. The study was performed for searching optimum values of FeSO4 and H2O2 concentration, pH and temperature. The H2O2 requirement seems to be re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemosphere

دوره 54 3  شماره 

صفحات  -

تاریخ انتشار 2004